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1 Introduction

In this Report, we describe a new mimetic finite-difference method for the
diffusion equations on polygonal/polyhedral meshes when the coefficients
and the right-hand side of the equations are discontinuous inside mesh cells.
The latter situation occurs in many important practical applications when
a designed mesh does not fit the interfaces between different materials. The
proposed method can be also efficiently applied to the case of meshes with
strong refinement in local subdomains and to homogenization problems. The
new method allows to reduce significantly the size of the underlying algebraic
systems by using special elimination procedures for groups of interior DOF.

The Report is organized as follows. In Section 2, we give the formulation
of the problem. In Section 3, we describe in details the proposed method. In
Section 4, we give the algebraic analysis of the method. Section 5 contains
results of numerical experiments. Finally, in Section 6, we briefly indicate
two natural generalizations of the new method.
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2 Problem formulation

2.1 Differential formulation

We consider the diffusion equation

− div
(
a grad p

)
+ cp = f in Ω (1)

where p is an unknown scalar solution function (pressure), a = a(x) is a
diffusion tensor, c = c(x) ∈ L∞(Ω) is a nonnegative function, f = f(x) ∈
L2(Ω) is a source function, and Ω ⊂ R

2 is a bounded domain. We assume that
the boundary ∂Ω of the domain Ω is partitioned into two nonoverlapping sets
ΓD (Dirichlet) and ΓN (Neumann), such that ΓD = ΓD and ΓD ∪ ΓN = ∂Ω.

In general, we assume that a is a symmetric, uniformly positive definite
2 × 2 matrix which piecewise constant entries, i.e.

(
a(x)ξ, ξ

)
≥ α2

(
ξ, ξ

)
∀ ξ ∈ R

2 a.e. in Ω

with a positive constant α2 which is independent of x and ξ.

Equation (1) is complemented with the boundary conditions

p = gD on ΓD,(
a grad p

)
· n = gN on ΓN ,

(2)

where n is the outward unit normal vector to ∂Ω, gD and gN are given
functions on ΓD and ΓN , respectively. We assume that problem (1) - (2) has
a solution p = p∗(x).
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We replace differential problem (1)-(2) by the equivalent first order system

a−1 u + grad p = 0

div u + c p = f in Ω
(3)

with boundary conditions

p = gD on ΓD,

−u · n = gN on ΓN ,
(4)

where u = −a grad p denotes the unknown flux vector function.
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2.2 Mimetic finite difference method

Let Th be a triangular partitioning of Ω. This partitioning can be, generally
speaking, nonconforming, i.e. a vertex of a mesh triangle in Th may belong to
the interior of an edge of another triangle in Th. We define the scalar product
in the space of discrete normal fluxes with a symmetric positive definite
matrix M (see, for instance, [2], [4]). Then the mimetic finite-difference
discretization of (3)-(4) is defined by the system of mesh equations

uh + GRADh ph = 0

DIVh uh + ch ph = fh

(5)

with properly defined discrete boundary conditions. This mesh system can
be presented in the matrix form by

(
M BT

B −Σ

) (
ū

p̄

)
=

(
Ḡ

F̄

)
(6)

with properly defined matrices M (matrix of the scalar products in the space
of fluxes), B, and Σ and vectors Ḡ and F̄ .
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2.3 Connection with mixed FE method

The weak formulation of (3) - (4) is as follows [1]: find u ∈ H(div, Ω),
u · n = −gN on ΓN , and p ∈ L2(Ω) such that the equations

a(u,v) + b(v, p) = lD(v)

b(u, q) − σ(p, q) = lf (q)
(7)

hold true for all v ∈ H(div, Ω), v · n = 0 on ΓN , and q ∈ L2(Ω).

Here the bilinear forms and linear functionals are defined by

a(u,v) =

∫

Ω

(
a−1u

)
· v dx, b(u, q) = −

∫

Ω

div u q dx,

σ(p, q) =

∫

Ω

c p q dx,

lD(v) = −

∫

ΓD

gD(v · n) ds, lf (q) = −

∫

Ω

f q dx.

(8)
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In order to approximate the above problem, we apply the mixed finite
element method. Given the finite dimensional subspaces Vh of the space
of fluxes V ≡ H(div, Ω), and Qh of the space of pressures Q ≡ L2(Ω),
respectively, we introduce the finite element problem in the form:
find uh ∈ Vh, uh · n = −gN,h on ΓN , and ph ∈ Qh such that the equations

a(uh,v) + b(v, ph) = lD(v)

b(uh, q) − σ(ph, q) = lf(q)
(9)

hold true for all v ∈ Vh, v · n = 0 on ΓN , and q ∈ Qh. Here gN,h is an
appropriate approximation of the function gN on ΓN .

Mixed FE method generates the mass matrix M which defines the scalar
product in the space of discrete normal fluxes. If we choose the space Vh

in (9) as described in Section 3, and we choose the underlying mass matrix
M for the scalar product in the mimetic finite-difference method then both
methods result in the same algebraic system (6).
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2.4 Assumptions

For the sake of simplicity, we assume that Ω is a union of L nonoverlapping
polygons Ωl with boundaries ∂Ωl, i.e.

Ω̄ =
L⋃

l=1

Ω̄l. (10)

Thus, Ω is a polygon with polygonal subdomains Ωl, l = 1, L.

Also, for the sake of simplicity, we assume that in each subdomain Ωl the
coefficient c is a positive constant and a is a constant scalar tensor, i.e.

c ≡ cl and a = al I2 in Ω, (11)

where cl and al are positive constants, l = 1, L, and I2 is the identity 2 × 2
matrix.
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3 Mimetic finite-difference method on polyg-

onal meshes with mixed cells

3.1 Polygonal meshes with mixed cells

Let TH(Ω) =
{
Ek

}N

k=1
be a conforming partition of Ω into nonoverlapping

polygons, i.e.

Ω =
N⋃

k=1

Ek, int Ek

⋂
int El = ∅, l 6= k. (12)

where int Ek denotes the interior of Ek.

The term “conforming” implies that two different polygons in the parti-
tion have either a common vertex, or a common whole edge, or a common
whole face, or do not intersect. We also assume that if f is a boundary face
of Ek for some k (i.e. f ⊂ ∂Ω) then either f ⊂ ΓD, or f ⊂ ΓN .

A mesh cell Ek is said to be mixed if the interior of Ek has nonempty
intersections with at least two subdomains Ωl with different values of al

and/or cl, l = 1, L. If the partitioning TH is not conforming with respect
to the boundaries of subdomains Ωl we definitely get mixed mesh cells Ek,
1 ≤ k ≤ N . Two examples of a mixed square mesh cell are shown in Figures 1
and 2.
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Figure 1: Mixed cell with three
materials

Figure 2: Mixed cell with inclusion
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3.2 Triangulation of mesh cells Ek

Let E be a particular mesh cell Ek in TH with m ≡ mk edges Γs, s = 1, m.
For example, for square mesh cells in Figures 1 and 2, m = 4. If the boundary
∂E of E intersects at least one of the interfaces between subdomains Ωl and
Ωl′, l 6= l′, this mesh cell is mixed. For instance, in Figure 1, three faces of E
intersect interface boundaries between subdomains Ω1, Ω2, and Ω3. The mesh
cell in Figure 2 is mixed but its boundary does not intersect with interfaces
between subdomains.

We define a partitioning of ∂E into T segments γt, t = 1, T such that the
interior of each segment γt belongs either to the interior of one subdomain
Ωl, l = 1, L, or to the interface boundary between only two subdomains Ωl

and Ωl′ , 1 ≤ l < l′ ≤ L, or to ΓN ∩ ∂Ωl, 1 ≤ l ≤ L. Thus,

∂E =
T⋃

t=1

γt. (13)

For example, for the mesh cell E in Figure 1 the boundary ∂E is parti-
tioned into seven segments {γt}, i.e. T = 7.

Let TE,h be a conforming partitioning of E into n triangles ej , i.e.

E =
n⋃

j=1

ej. (14)

The conformity of triangulation means that any two different triangles in
TE,h either have a common edge, or a common vertex, or do not intersect
each other.

We assume that the partitioning TE,h is also conforming with respect to
interface boundaries between subdomains Ωl and Ωl′, 1 ≤ l < l′ ≤ L, i.e.
edges of triangles in Te,h do not intersect these interfaces. Examples of TE,h

for the cell E in Figures 1 and 2 are shown in Figures 3 and 4, respectively.
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Figure 3: An example of TE,h Figure 4: An example of TE,h
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We define the global triangular partitioning Th of Ω by

Th = TEk,h on Ek, k = 1, N,

i.e. the trace of Th on a mesh cell Ek is the above triangulation TEk,h of Ek,
k = 1, N . It is obvious that the triangulation Th is not globally conforming
if the triangulations TEk,h and TEk′ ,h do not match on the interfaces between
cells Ek and Ek′ , 1 ≤ k < k′ ≤ N .
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The major goal of this research is to construct a discretization for the
diffusion problem (1) - (2) under the following conditions:

1. all the degrees of freedom (DOF) for the flux u should be associated
with the interface segments γk,t = γk′,t′ between neighboring cells Ek

and Ek′ with only one DOF per interface segment;

2. all the DOF representing the solution function p should be associated
with cells Ek in TH with only one DOF per Ek, k = 1, N

The discretization method to be proposed consists of four steps:

1. we derive a discretization for the second equation in (3) (the conser-
vation law equation) on Ek, k = 1, N ;

2. we discretize problem (3) - (4) by a mimetic finite-difference method
on triangular mesh Th;

3. we eliminate the DOF for the flux u associated with the edges of Th

which are interior for cells Ek, k = 1, N . We also eliminate all the
DOF for the solution function p;

4. we derive the requested discretization by the combining of the discrete
equations obtained in steps 1 and 3
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Step 1

We derive the discretization for the conservation law equation by the
integration of this equation over the cells Ek in TH :

∫

Ek

(
∇·u + c p

)
dx ≡

Tk∑

t=1

∫

γk,t

(
u·nk,t

)
ds +

∫

Ek

c p dx =

∫

Ek

f dx, k = 1, N,

(15)

where nk,t is a unit normal to γk,t, t = 1, Tk. If γk,t belongs to interface
between Ek and a neighboring cell Ek′ , and k < k′, we assume that nk,t is
directed from Ek into Ek′ . On γk,t belonging to ∂Ω, we assume that nk,t is
the unit outward normal to ∂Ω.

Thus, the discrete equation for Ek can be written as

Tk∑

t=1

|γk,t|uk,t + |Ek| ĉk pk = |Ek| fk (16)

where |γk,t| is the length of γk,t, |Ek| is the area of Ek,

ĉk =
1

|Ek|

∫

Ek

c dx, fk =
1

|Ek|

∫

Ek

f dx, (17)

and

uk,t =
1

|γk,t|

∫

γk,t

(
u · nk,t

)
ds. (18)

The equations (15) are complemented by the conditions that on the inter-
face segments γk′,t′ = γk,t between neighboring cells Ek and Ek′ with k < k′

we have

uk′,t′ = −uk,t. (19)
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Step 2

Let Wk,h be the lowest order Raviart-Thomas FE space on the triangu-
lation TEk,h, k = 1, N . Then the FE space Vh for the mixed FE method (9)
is defined as follows. Vh consists of vector functions vh such that:

1. vh ∈ Wk,h in Ek, k = 1, N ;

2. vh ·nk,t ≡ vk,t = const on γk,t under the condition (19), t = 1, Tk,
k = 1, N .

The latter choice of Vh generates the symmetric positive definite matri-
ces Mk, k = 1, N , and M for the polygonal cells Ek, k = 1, N , and for
the whole domain Ω, respectively. With the above matrix M for the scalar
product in the space of discrete fluxes the mimetic finite-difference method
(5) results in system (6) with the matrix

A ≡

(
M BT

B −Σ

)
=

N∑

k=1

Nk Ak N
T
k (20)

where

Ak =

(
Mk BT

k

Bk −Σk

)
(21)

is the matrix derived in Ek on the triangular mesh TEk,h by the mimetic
finite-difference method with the scalar product matrix Mk, and Nk is the
assembling matrix, k = 1, N .
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Step 3

In order to describe the elimination algorithm for the vector p̄ and the
interior (with respect to mesh cells Ek, k = 1, N) DOF for the flux ū we in-
troduce the following partitionings for the vectors ū and Ḡ, and the matrices
M and B in (6):

ū =

(
ūΓ

ūi

)
, Ḡ =

(
ḠΓ

Ḡi

)
,

M =

(
MΓ MΓi

MiΓ Mi

)
, B =

(
BΓ Bi

)
,

(22)

where subindex “i” stays for the interior DOF of ū, and “Γ” stays for the
rest of DOF which are associated with boundaries ∂Ek of Ek, k = 1, N .

With the above partitionings, we can present system (6) in the following
block form




MΓ MΓi BT
Γ

MiΓ Mi BT
i

BΓ Bi −Σ







ūΓ

ūi

p̄


 =




ḠΓ

Ḡi

F̄


 . (23)

First, we eliminate the subvector ūi. Then we get the system

(
M̃Γ B̃T

Γ

B̃Γ −S

) (
ūΓ

p̄

)
=

(
ḡΓ

f̄

)
(24)

where

M̃Γ = MΓ − MΓi M
−1
i MiΓ (25)

is the Schur complement for matrix M ,

B̃Γ = BΓ − Bi M
−1
i MiΓ, (26)
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S = Bi M
−1
i BT

i + Σ, (27)

f̄ = F̄ − Bi M
−1
i Ḡi, (28)

and

ḡΓ = ḠΓ − MΓi M
−1
i Ḡi. (29)

It is obvious that both matrices M̃Γ and S are symmetric and positive defi-
nite. Moreover, S is a block diagonal matrix.

Let us introduce the partitionings for the matrices Mk and Bk similar to
those we defined for the matrices M and B in (22):

Mk =

(
M

(k)
Γ M

(k)
Γi

M
(k)
iΓ M

(k)
i

)
, Bk =

(
B

(k)
Γ B

(k)
i

)
, k = 1, N. (30)

Then, the matrices M̃Γ, B̃Γ, and S in (25)-(27) can be presented in the
assembling form as follows:

M̃Γ =

N∑

k=1

NΓ,k M̃
(k)
Γ NT

Γ,k, (31)

B̃Γ =
N∑

k=1

NS,k B̃
(k)
Γ NT

Γ,k, (32)

and

S =
N∑

k=1

NS,k Sk NT
S,k (33)

with the appropriate assembling matrices NΓ,k and NS,k, k = 1, N .

Here,
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M̃
(k)
Γ = M

(k)
Γ − M

(k)
Γi

[
M

(k)
i

]
−1

M
(k)
iΓ (34)

B̃
(k)
Γ = B

(k)
Γ − B

(k)
i

[
M

(k)
i

]
−1

M
(k)
iΓ , (35)

and

Sk = B
(k)
i

[
M

(k)
i

]
−1 [

B
(k)
i

]T
+ Σk. (36)

Thus, the matrices in (31)-(33) can be computed on the element-by-
element basis by computing the matrices in (34)-(36) in parallel.

Now, we get the system for the flux DOF by eliminating the vector p̄ in
(24):

R ūΓ = ξ̄Γ (37)

where

R = M̃Γ + B̃T
Γ S−1 B̃Γ (38)

and

ξ̄Γ = ḡΓ + B̃T
Γ S−1 f̄ . (39)

As it was mentioned before, S is a block diagonal matrix with the matrices
Sk on the diagonal, k = 1, N .

Step 4

Now, we shall derive the final system by using equations (16)-(19) and
(37)-(39). For this goal, we present equation (16) assigned for a cell Ek in
the following matrix form:
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B̂
(k)
Γ ūΓ − σk pk = |Ek| fk, (40)

where

σk = |Ek| ĉk, (41)

1 ≤ k ≤ N . At the same time, the equations in (23) assigned for the cell Ek

can be written in the matrix form by:

B
(k)
Γ ū(k) − Σk p̄(k) = F̄ (k) (42)

where ū(k), p̄(k), and F̄ (k) are the restrictions on Ek of the vectors ū, p̄, and
F̄ , respectively.

Let us denote by ēk the column-vector in R
nk with all the components

equal to one, i.e.

ēT
k =

(
1 1 . . . 1

)
. (43)

Let us also denote the diagonal entries of the diagonal matrix Σk by σ
(k)
i ,

i = 1, nk, i.e.

Σk = diag
{

σ
(k)
1 , σ

(k)
2 , . . . , σ(k)

nk

}
. (44)

It can be easily shown that equation (40) can be obtained by multiplica-
tion of equation (42) by the vector ēT

k . In particular,

B̂
(k)
Γ = Pk

(
ēT

k B
(k)
Γ 0

)
P̄ T

k (45)

where Pk is the appropriate permutation matrix,

σk =

nk∑

i=1

|e(k)
i | c(k)

i , (46)
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p̄(k) =
1

σk

nk∑

i=1

|e(k)
i | c(k)

i p
(k)
i , (47)

and

f̄ (k) =
1

|Ek|

nk∑

i=1

|e(k)
i | c(k)

i f
(k)
i , (48)

where

c
(k)
i =

1

|e(k)
i |

∫

e
(k)
i

c dx, (49)

and

f
(k)
i =

1

|e(k)
i |

∫

e
(k)
i

f dx, (50)

1 ≤ i ≤ nk, 1 ≤ k ≤ N .

Thus, we have arrived to two systems of equations

R ūΓ = ξ̄ (51)

B̂Γ ūΓ − Σ̂ p̄E = F̄E (52)

where the rows of B̂Γ are defined in (15),

Σ̂ = diag
{

σ1, σ2, . . . , σN

}
, (53)

and components of p̄E and F̄E are defined in (47) and (48), respectively.

We derive the final system
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M̂ ūΓ + B̂T
Γ p̄E = η̄

B̂Γ ūΓ − Σ̂ p̄E = F̄E

(54)

where

M̂ = R − B̂T
Γ Σ̂−1 B̂Γ (55)

and

η̄ = ξ̄ − B̂T
Γ Σ̂−1 F̄E. (56)

In fact, we multiply equations in system (52) by the matrix B̂T
Γ Σ̂−1 and

subtract them from the the equations in system (51) .

It can be shown by using special algebraic analysis that matrix M̂ in (55)
is positive definite and well conditioned. For instance, its minimal eigenvalue
is bounded from below by the minimal eigenvalue of matrix M in (20).
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4 Algebraic analysis of the method

Let us consider the following eigenvalue problem for the matrix Sk in (36):

S w̄ ≡
(
Bi M

−1
i BT

i + Σ
)
w̄ = λ w̄ (57)

where, for the sake of simplicity, the upper index “k” is omitted.

Then, the spectral decomposition of S is given by

S = Σ W Λ W T Σ (58)

where

Λ = diag
{
λ1, λ2, . . . , λn

}
,

W =
[
w̄1, w̄2, . . . , w̄n

]
,

(59)

and n is the size of S. Here, 1 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues in
(57) and w̄1, w̄2, . . . , w̄n are the underlying Σ-orthonormalized eigenvectors,
i.e.

(w̄k, w̄l)Σ ≡ (Σ w̄k, w̄l) = δkl, k, l = 1, n, (60)

and δkl is the Kronecker delta.

The kernel of Bi consists of the vectors with equal components. Thus, the
dimension of ker (S − Σ) equals one. It follows that the minimal eigenvalue
λ1 = 1 of S is single, i.e. λ1 < λ2, and the underlying eigenvector w̄1 in (57)
is known explicitly:

w̄1 = β ē (61)

where

ē =
(

1 . . . 1
)
, (62)
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β2 =
1

(Σ ē, ē)
=

1

σ
, (63)

and σ is defined in (41), (46),(49):

σ = |E| ĉ. (64)

Remind that the index “k” is omitted for the sake of simplicity in notations.

The spectral decomposition for the matrix S−1 can be given by

S−1 = W Λ−1 W T =
n∑

j=1

1

λj

w̄j w̄T
j = Q1 + Q2 (65)

where

Q1 = w̄1 w̄T
1 (66)

and

Q2 =
n∑

j=2

1

λj

w̄j w̄T
j . (67)

Let us consider the matrices (the index “k” is now back)

Lk =
[
B̃

(k)
Γ

]T
S−1

k B̃
(k)
Γ , (68)

k = 1, N in (38):

[
B̃Γ

]T
S−1 B̃Γ ≡

n∑

k=1

NΓ,k Lk NT
Γ,k. (69)

With notations (66), (67), we get

Lk = L
(1)
k + L

(2)
k (70)
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where

L
(t)
k =

[
B̃

(k)
Γ

]T
Q

(k)
t B̃

(k)
Γ , t = 1, 2. (71)

It is obvious that the matrices L
(t)
k , t = 1, 2, are symmetric and at least

positive semidefinite.

Let us analyze the matrix

L
(1)
k =

[
B̃

(k)
Γ

]T
w̄

(k)
1

[
w̄

(k)
1

]T
B̃

(k)
Γ (72)

where

B̃
(k)
Γ = B

(k)
Γ − B

(k)
i

[
M

(k)
i

]
−1

M
(k)
iΓ . (73)

The vectors w̄
(k)
1 belong to ker

[
B

(k)
i

]T
, k = 1, N . Thus, we get much

simpler formulas for the matrices L
(1)
k :

L
(1)
k =

[
B

(k)
Γ

]T
w̄

(k)
1

[
w̄

(k)
1

]T
B

(k)
Γ = β2

k

[
B̂

(k)
Γ

]T
B̂

(k)
Γ (74)

where the matrices B̂
(k)
Γ are defined in (45), k = 1, N .

Finally, we get a simple formula for the matrix L(1):

L(1) ≡
N∑

k=1

NΓ,k L
(1)
k NT

Γ,k = B̂T
Γ Σ−1 B̂Γ. (75)

Compare (55), (69), and (75), we conclude that the matrix

M̂ ≡ R − B̂T
Γ Σ̂−1 B̂Γ = M̃ + L(2) (76)

where
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L(2) =
N∑

k=1

NΓ,k L
(2)
k NT

Γ,k, (77)

is symmetric and positive definite.

It is also obvious that the minimal eigenvalue of M̂ is bounded from below
by the minimal eigenvalue of the matrix M in (20). It can be also shown

that the condition number of the matrix M̂ does not depend on the mesh
step sizes if the mesh Ωh is regular shaped and quasiuniform.
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5 Numerical results

In this Section, we present the results of numerical experiments for the dif-
fusion equation

−div
(
a grad p

)
+ c p = f (78)

in the square domain Ω = (0; 1) × (0; 1) with a scalar diffusion tensor
a, a positive coefficient c, and a given source function f . On each side Γi,
1 ≤ i ≤ 4 of Ω the solution p satisfies either Dirichlet, or Neumann boundary
condition, i.e.

p = gD on ΓD,

−
(
a grad p) · n = gN on ΓN

(79)

where n is the outward unit normal to the boundary ∂Ω.

In the numerical experiments, we assume that Ω is partitioned into nonover-
lapping subdomains

{
Ωk

}
and in each of the subdomains the coefficients a

and c, and the solution function p are constants. The mesh ΩH is always a
square one. The discretization method is described in Section 3. We com-
pare the numerical results for the new methods with the results obtained on
the meshes with the earlier proposed in [3], [4] method which we refer as
div-const one.

The interfaces Γkl = ∂Ωk ∩∂Ωl between subdomains do not belong to the
union f the edges of the cells in EH . So, we naturally get mixed cell in the
neighborhood of the interface boundaries Γkl. We calculate the error of the
discrete solutions obtained by the new and by div-const methods by using
the reference solution.

We calculate the reference solution numerically by the lowest order Raviart-
Thomas mixed finite element method on a very fine triangular mesh (∼ 106

triangles) which is conforming with respect to the interfaces Γkl.
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Test Example 1

In the first experiment, we partition Ω into two rectangles as shown in
Figure 5. The mesh Ωh is chosen in such a way that the interface Γ12 between
Ω1 and Ω2 crosses the vertical set of cells E as shown in Figure 6.

a c f1 1 1

a c f2 2 2

S1

S2

Figure 5: Partitioning of Ω into Ω1 and Ω2

Figure 6: Square mesh Ωh
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Input data:
a1 = 1 a2 = 1

c1 = 100 c2 = 0.01

f1 = 0.01 f2 = 100

Boundary conditions:

p|Γ1 = 0

p|Γ2 = 5

−(a∇p · n)|Γ3∪Γ4 = 0

Mesh step size in Ωh : h = 1/51.
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Figure 7: Reference solution

Figure 8: Reference solution along the line y=0.5
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Figure 9: Pointwise error for pressure function along the line y=0.5
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Figure 10: Error for pressure function along the line y=0.5, div-const method

Figure 11: Error for pressure function along the line y=0.5, new method
(attention: different scale)
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Figure 12: Error for fluxes along the line y=0.5
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Figure 13: Error for fluxes along the line y=0.5, div-const method

Figure 14: Error for fluxes along the line y=0.5, new method (attention:
different scale)
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Test Example 2

In the second experiment, we partition Ω into to polyhedrons as shown
in Figure 15.

a c f1 1 1 a c f2 2 2

S1

S2

Figure 15: Partitioning of Ω into Ω1 and Ω2

Figure 16: Square mesh Ωh
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Input data:
a1 = 1 a2 = 1

c1 = 1000 c2 = 0.01

f1 = 0.01 f2 = 1000

Boundary conditions:

p|Γ1 = 0

p|Γ2 = 10

−(a∇p · n)|Γ3∪Γ4 = 0

Mesh step size in Ωh : h = 1/51.
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Figure 17: Reference solution

Figure 18: Reference solution along the line y=1/6
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Figure 19: Pointwise error for pressure function along the line y=1/6
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Figure 20: Pointwise error for pressure function along the line y=1/6, div-
const method

Figure 21: Pointwise error for pressure along the line y=1/6, new method
(attention: different scale)
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Figure 22: Error for fluxes along the line y=1/6
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Figure 23: Error for fluxes along the line y=1/6, div-const method

Figure 24: Error for fluxes along the line y=1/6, new method
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Test Example 3

In the third experiment, we partition Ω into to polyhedrons as shown in
Figure 15. The mesh Ωh is shown in Figure 16.

Input data:
a1 = 500 a2 = 1

c1 = 1000 c2 = 0.01

f1 = 0.01 f2 = 1000

Boundary conditions:

p|Γ1 = 0

p|Γ2 = 10

−(a∇p · n)|Γ3∪Γ4 = 0

Mesh step size in Ωh : h = 1/51.
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Figure 25: Reference solution

Figure 26: Reference solution along the line y=1/3
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Figure 27: Pointwise error for pressure function along the line y=1/3 (atten-
tion: different scale)
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Figure 28: Pointwise error for pressure function along the line y=1/3, div-
const method

Figure 29: Pointwise error for pressure along the line y=1/3, new method
(attention: different scale)
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Figure 30: Error for fluxes along the line y=1/3
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Figure 31: Error for fluxes along the line y=1/3, div-const method

Figure 32: Error for fluxes along the line y=1/3, new method
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Test Example 4

In the fourth experiment, we partition Ω into four polyhedrons as shown
in Figure 33.

S1 S2

S3 S4

a c f1 1 1 a c f2 2 2

a c f3 3 3 a c f4 4 4

Figure 33: Partitioning of Ω into Ω1, Ω2, Ω3, and Ω4

Figure 34: Square mesh Ωh
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Input data:

a1 = 1 a2 = 1 a3 = 1 a4 = 1

c1 = 100 c2 = 0.001 c3 = 0.001 c4 = 100

f1 = 0.001 f2 = 100 f3 = 100 f4 = 0.001

Boundary conditions:

p|Γ1 = 0

p|Γ2 = 10

−(a∇p · n)|Γ3∪Γ4 = 0

Mesh step size in Ωh: h = 1/51
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Figure 35: Reference solution

Figure 36: Reference solution along the line y=1/3
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Figure 37: Pointwise error for pressure function along the line y=1/3
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Figure 38: Pointwise error for pressure function along the line y=1/3, div-
const method

Figure 39: Pointwise error for pressure function along the line y=1/3, new
method (attention: different scale)
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Figure 40: Error for fluxes along the line y=1/3
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Figure 41: Error for fluxes along the line y=1/3, div-const method

Figure 42: Error for fluxes along the line y=1/3, new method
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Test Example 5

In the fifth experiment, we partition Ω into four polyhedrons as shown in
Figure 33.

Input data:

a1 = 1 a2 = 500 a3 = 800 a4 = 2

c1 = 100 c2 = 0.001 c3 = 0.001 c4 = 100

f1 = 0.001 f2 = 100 f3 = 100 f4 = 0.001

Boundary conditions:

p|Γ1 = 0

p|Γ2 = 10

−(a∇p · n)|Γ3∪Γ4 = 0
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Figure 43: Reference solution

Figure 44: Reference solution along the line y=1/3

57



Figure 45: Pointwise error for pressure function along the line y=1/3
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Figure 46: Pointwise error for pressure function along the line y=1/3, div-
const method

Figure 47: Pointwise error for pressure function along the line y=1/3, new
method (attention: different scale)
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6 Generalizations

1. The extension to 3D problems can be done just by replacing in Sec-
tion 3 the word “polygon” by the word “polyhedron”. Of course,
the description of the method for 3D problems is more complicated
technically.

2. The multilevel extension of the method is also obvious. On the first
level we have to partition polygonal cells E

(0)
k ≡ Ek into smaller

polygons
{
E

(1)
k,l

}
and to assume that the discretization scheme on

the smaller polygonal cells is known. Then, the procedure can be
repeated until we get the triangular partitionings.
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